Chapter 4
Constrained optimization

Most economic problems consist in finding how to optimally allocate scarce
resources. This sentence describes what will be done in this chapter, that
is optimizing a function when the decision variables are constrained within
limits.

Chapter 3 offered only a few examples because practical problems of fi-
nance are constrained optimization problems. However, the "trick" to solve
a constrained problem is to transform it in an unconstrained problem hav-
ing the same solutions, then justifying chapter 3. The price to pay for this
transformation is an increase in the number of decision variables.

Of course, to be interesting to study, a constrainted problem should de-
pend at least on two decision variables!'.

Section 4.1 deals with the optimization of functions depending on two
variables with one equality constraint. We introduce the Lagrangian in this
simple framework. The Lagrangian is the essential tool to solve constrained
problems.

Section 4.2 generalizes results of section 4.1 to problems with p variables

'With only one variable, two situations are possible: either the solution is in the interior
of the domain limited by the constraint or it is on the frontier. In the first case, methods
of chapter 3 are still valid, and in the second case, it is enough to compare the values of
the function on the frontier to find the optimal one.

Download free eBooks at bookboon.com


http://bookboon.com/

and m equality constraints. The final section deals with the most general

problem with equality and inequality constraints.

4.1 Functions of two variables and equality

constraint

In this section, we focus on the most simple constrained optimization prob-
lem (two variables, one constraint). The results are easy to interpret, and
their generalization is natural afterwards. This presentation avoids losing the

reader into unimportant calculation details.

4.1.1 Problem statement

The objective function f is defined on an open subset D C R? and is twice
continuously differentiable. The constraint is written by means of a function
g, defined on D and also twice continuously differentiable. We develop here-
after the case of a maximization problem, but the reasoning is similar for
a minimization. The two cases (maximum and minimum) will be separated
when necessary.

The optimization problem, denoted P, writes:

max f(l'l,l’g) (P)

(x1,x2)ED

u.c. g(xy,z9) =c

where ¢ € R is given®.

For example, if g is a budget constraint in a utility maximization problem,
g(z1,x2) = ¢ means pyx; + pary = R where ¢ = R is the wealth of the
consumer. Such a linear constraint induces an explicit relationship between

the two decision variables, that is xo = (R — p121)/pe. In such a simple case,

21.¢c is a shortcut for "under the constraints”
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the constraint writes xo = h(z;) where h is a one-variable function. When
this kind of transformation is possible, we are back to the single-variable

(unconstrained) problem written as:
I%?X f(l’l, h (371))

In general, this transformation cannot be used. This is the reason why
the Lagrangian has been introduced to solve optimization problems. It is an-
other way to transform a constrained problem into an unconstrained problem

(without changing the optimal values of the decision variables).

To illustrate what is going on, denote x5 = ¢(x7) where (27, 23) is a local
optimum of f, and 2% is an implicit function de z7] (see chapter 2), by means

of the constraint g(xy,z5) = c.

The derivation of compound functions can be used to calculate the deriv-
ative of F(z1) = f(x1,¢ (1)) at 1 = z] (chapter 2 of part I). We then
write: of of

F(a}) = g (ah, 0 (a7) + 0 (D)5 (0] 0 o) (1)

The implicit function theorem allows to deduce:

2 ()
I\ Ox1
¢'(a]) = ;_3392(%*)

(4.2)

At the optimum we know that F’(z7) = 0. Equations (4.1) and (4.2) lead

to:
) _ @) (4.3)
ﬁ(x*) N ﬁ(x*) ‘
Oxo Ox2
If A is defined by:
s o)
2 (o)
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we obtain:

of , ., 99 o
0xy (") = 0y (z7) =0 (4.4)
of , . 99

Equation (4.5) comes from relation (4.3). More generally, equations (4.4)
and (4.5) are useful to specify the intuition behind the definition of the

Lagrangian.

4.1.2 Lagrangian and optimality conditions

Definition 142 The Lagrangian of problem P is the function L(\,z) de-
fined by:
L x) = f(z) +X(c—g(x))

A is the Lagrange multiplier of the constraint g(z) = c.

Remark 143 In some books, the right-hand side of the constraint is 0. Of
course, defining g*(x) = g(x) — ¢ leads to write the Lagrangian as f(x) —

Ag*(z) and the constraints as g*(x) = 0.

The following proposition shows how problem P is solved with the meth-
ods developed in chapter 3 by optimizing L. It is worth noticing that if f is
a function depending on two variables, £ is a function of three variables.

Solving P is equivalent to optimize the Lagrangian without constraints
(denote P’ this problem):

L, P
max (A, ) (P")

If (A", 2*) is a local optimum of P’, proposition 136 of chapter 3 says that
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the partial derivatives of £ are equal to 0 at (A", z*), that is:

OL v o _ Of o w09 o .
a—xl(k,f) = axl(x) Aaxl(ﬂf)—O
OL v o _ Of o w99 .
a—@(AJ) = ax2($) )\am(x)—o
oL

— (N2") = ¢c—g(2*)=0

() e
The last equation ¢ — g (z*) = 0 simply means that the constraint is

satisfied. A consequence is that the optimal value of L is also the optimal

value of f. This method kills two birds with one stone. It transforms a

difficult problem in an easy one by optimizing another function, but the

optimal values are the same in the two problems.

Proposition 144 If z* is a local mazimum of f under the constraint g(x) =

¢ and if the gradient of g is not zero at x*, there exists \* satisfying:

oL _of

- . 09
6_xi(/\’x)_8xi

@) =X 5% (@) =0

fori=1,2.

Proposition 144 is a necessary optimality condition. z* must be an op-
timum for the relationship to be satisfied. As in chapter 3, second-order
conditions involving the Hessian matrix of £ are required to obtain sufficient
optimality conditions.

The condition on the gradient of g (it should not be zero) is satisfied
in most finance problems. In fact, the standard finance problem has linear
constraints, either a budget constraint to maximize an expected utility or a
portfolio constraint in portfolio choice problems. The gradient of g cannot

be 0 when the constraint is linear.

Proposition 145 (\*,2*) is a local mazimum (minimum) of L if the fol-

lowing conditions are satisfied:
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1) VLA, z*)=0.
2) The determinant of Hp(N*,x*) is positive (negative).

Condition (2) deserves some comments, because only the determinant of
H (A", x*) seems to be involved, and not all the principal minors, contrary
to the sufficient optimality conditions in chapter 3. In fact, the formulation
of the condition comes from the structure of H,. £ is a linear function of
A, so the first principal minor of H, is always 0 because it is equal to the
second-order derivative of £ with respect to A.

The second principal minor, denoted M, is equal to:

0 — 9% (x¥) dg ’
My = 2 Om 2 =— |5 (@ ) <0
T Sy ) - A ) (52

M, is always negative, meaning that the effective optimality condition
can only concern the sign of the last principal minor, that is the determinant
of Hp(\", z*).

Notice that proposition 144 includes a condition on the gradient of g.
This condition appears here in part (2) of proposition 145. In fact, if the
gradient of g was 0, the first line of H.(z*) would be null and det(H,(z*))

would also be equal to 0.
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Example 146 Consider the utility mazimization problem under a budget

constraint (the notations are as usual):

max U(l’l,.TQ) = \/T1X2

(z1,x2)€ER*
U.C. P11 + P2l = R

The Lagrangian of the problem is:
LA, x) =U(xy,12) + MR — p171 — paa)

The first-order conditions are the following:

ou , ., .
8—961(55)—)\171 =0
aU * * _
8_x2<x)_)\p2 =0

R—piz] +px; = 0
Replacing U by its definition leads to:

*
1 [x5

S 2 e = 0
2\ 23 p1

1 |3

S, = 0
o\/zy P2

R —pix] +pexy; = 0

We are back to the standard result of microeconomics. The ratio of marginal

utilities is equal to the ratio of prices.

Consider the following parameters, R = 10 ; py = 3 ; po = 4. We obtain
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the following conditions:

i 3

72 & 4.7

x] 4 (47)
3z +4x5 = 10

meaning that 5 = % and x] = g
First, we observe that R is equally shared between the two goods because
3x 2=4x2=5. This result is in line with intuition. The utility function
18 symmetric, so the optimal amounts spent in each good are equal.
Second, the Lagrange multiplier is equal to:
N Y

=-—4| 5 =-7=0144
2p1 \| 2] 12

and the utility at x* is /2 x 2 =1.4434
Imagine now that system (4.7) is solved twice, first with R = 9.8 and
second with R = 10.2.

If R = 9.8, we obtain:

5.1 10.2 5.1 10.2
R=10.2; :c}‘:? ; szY ; U(xf,x;):\/? X T:1.4722

The objective function decreases by 0.0289 when R decreases by 0.2 units. A
linear approximation gives a decrease in utility of 0.1445 for one unit less in
the budget constraint. Symetrically, if R increases by 0.2, utility increases
by 0.0288, that is an increase of 0.144 for one more unit spent. 0.144 1is
exactly the value of the Lagrange multiplier. It is the reason why the Lagrange

multiplier measures the sensitivity of utility (objective function) with respect
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to variations in available wealth (constraint). The other more direct route to
come to this interpretation is to verify that the derivative of the Lagrangian
with respect to wealth is exactly \.

It remains to check that our solution is a maximum. The Hessian matrix

of the Lagrangian is:

0 -1 -1
He (N, 2%) = -1 _4i; 2_? _% m{lz;
-1 _%1 x;*lx; _49103 i_;

A few calculations lead to:
2

det(He (V7)) = |~ - 2
(@5 ()

_ lE@em?

RG]

This determinant is positive. x* then maximizes U under the budget con-

straint.
Example 146 is a specific case of the following proposition.

Proposition 147 If a C?—function f, defined on an open convexr subset
D C R?, is concave (convex) and if the constraint g is affine on D, then any

local mazimum (minimum) is a global maximum (minimum,).

4.2 Functions of p variables with m equality

constraints

We consider now twice continuously differentiable functions f, g1, ..., g, de-

fined on an open domain D C RP and taking their values in R. We also
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Constrained optimization

assume m < p. The optimization problem addressed in this section is:

max f ()

uc. gi(z) = ¢, j=1,..

(P)

Following the approach of the preceding section, the Lagrangian of the

problem is:
m

L) = fl@)+ ) Ai(e — gi(@))

J=1

There exists one Lagrange multiplier per constraint; the initial problem

with p variables and m constraints has become an unconstrained maximiza-

tion problem with p 4+ m variables.
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4.2.1 Local optimality conditions
Necessary conditions

We follow the same structure as before and start with a necessary optimality

condition in the following proposition.

Proposition 148 Let x* be a local optimum of f, satisfying the constraints
of problem (P) and such that the gradients Vg;(z*),j =1, ...,m are linearly
independent vectors in RP.

There exists \* € R™ such that the gradient of L is the null vector at x*,
that is:

9, L 09, .
f(a:*)—Z)\iZ(:v) = 0ii=1,...,p
cj—gi(z*) = 0ifj=1...m

Why should the gradients be linearly independent? This condition is not
intuitive at all. Consider the following example with three variables and two

constraints defined as follows:

J}1+2l’2+1‘3 = C

2r1 +4x9 + 223 = o

The left hand side of the second equality is twice the left hand side of
the first one. Therefore, we can face two situations. If co # 2¢;, the problem
has no solution. But if ¢; = 2¢y, the two constraints are redundant, one is

enough. The gradients are equal to:

2
Vgi() =1 2 | et Vga(z) = | 4
2

These two vectors are colinear because Vgo(z) = 2 X Vg (z).
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In general when the gradients are not linearly independent, at least one
constraint can be removed before applying proposition 148.

In problems with constraints, Lagrange multipliers are interpreted as in
single-variable problems. Each multiplier measures the sensitivity of the ob-
jective function with respect to variations in the right-hand side of the con-
straints. These multipliers lose their significance when gradients are colinear.
The problem has the same nature as the one of multicolinearity in multiple
regression. When independent variables are colinear, nothing relevant can

be said about the significance of the regression coefficients.

Sufficient optimality conditions

After reading chapter 3, the reader knows that sufficient optimality condi-
tions are based on the Hessian matrix of the Lagrangian. However, this
matrix is really special because £ is a linear function of the multipliers A;.
Therefore the second-order derivatives with respect to the multipliers A; are
0. In a problem with m constraints, the (m, m)-dimensional North-West cor-
ner of H.(z) only contains zeros. For example, in a problem with 3 variables

and two constraints, H.(z) is as follows:

0 0 o)
o0 e me) R
0 0 _0m () Doz (g 992 (o
991 g2 82821 ( ) ggz ( ) gg?: ( ) H,
He(z) = | =55 (@) =50 (0) 53 (0)  5om (0 goom () | = b
o o 2 2 2 2
—am (@) —32(2) 5ig, (1) G5 g (@
0 o) 9L 9L 9L
_8_2, ('T) _8_g§ (.’13) O0x10x3 (:C) Ox30xa (':C) 8_1*% ($>

H, is a (2,2) null matrix. H» is a (3,2) matrix containing the derivatives
of the constraints with respect to the variables and Hj is a (3, 3) matrix the
elements of which are the second-order derivatives of £ with respect to the
three variables.

The structure of H.(x) implies that the first 2m principal minors are not
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significant in characterizing the optimum. In general, if the problem has p
variables and m constraints, only the sign of the p —m last principal minors
matter. In fact, H; is (p +m,p+ m)-dimensional and, as just described,
the 2m first principal minors are not significant. The number of significant

minors is then p +m — 2m =p — m.

Proposition 149 z* is a local mazimum of f if:
1) The constraints are satisfied at x*.
2) There exists a vector of multipliers \* satisfying VL(N", z*) = 0.
3) The signs of the last p — m principal minors of Hp (N, x*) alternate,

the first one being negative if m is even and positive if m is odd.

Part (3) means that, if the condition is satisfied, the Hessian matrix is

negative semi-definite.

Proposition 150 z* is a local minimum of f if:
1) The constraints are satisfied at x*.
2) There exists a vector of multipliers \* satisfying VL(N", z*) = 0.
3) The last p — m principal minors of Hp(\*,x*) have the same sign as

(—1)™.

Part (3) means that, if the condition is satisfied, the Hessian matrix is

positive semi-definite.

4.2.2 Global optimality conditions

The global optimality conditions are quite close to the conditions proposed
for functions depending on two variables. The difference comes from the
existence of multiple constraints. It is the reason why we do not comment
this proposition. The reasoning used for functions of two variables is still

valid here.
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Proposition 151 If f, defined on an open convex set D C RP, is concave
(convez), and if the constraints g; are affine functions on D, any local max-

imum(minimum,) is also global.

We can now address the general case in which the two types of constraints

(equalities and inequalities) coexist.

4.3 Functions of p variables with mixed con-

straints

4.3.1 The problem

This last section addresses the most general problem where inequality and
equality constraints coexist. The functions f,g;, hy of problem (4.8) are
defined on an open subset D in RP and twice continuously differentiable.

The optimization problem writes:

max f(z)
uc. gi(zr)=c¢;,j=1,....m (4.8)
hk<l’) S bk, k= 1, ., n

Remark 152 Choosing inequality constraints as « < » does not matter be-

cause any inequality h(zx) > c is equivalent to —h(z) < —c.

To gain in clarity when stating the optimality conditions we used different
notations depending on the type of constraint (h for inequalities and ¢ for
equalities).

To emphasize the link with the results of the preceding section, imagine
that a solution x* to problem (4.8) has been found. The set of inequal-
ity constraints may be divided in two subsets: the first subset contains the

constraints satisfying hg(z*) = by, and the second subset contains the con-
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straints satisfying hg(z*) < by. The following definition specifies the concept

of binding constraints.
Definition 153 A constraint k is binding at x* if hy(z*) = by.

As mentioned in the introduction of the chapter, the constraints often
refer to scarce resources. by, then denotes the quantity of the available resource
and the equality hy(z*) = by means that all the resource has been consumed

at z*. It explains why the word binding is used.

4.3.2 The solution

Finding a solution may be difficult because, at an optimum x* some con-
straints may be binding and other ones not binding. We usually interpret
Lagrange multipliers as measures of the sensitivity of the objective function
to variations of the right-hand side of the constraint. But in this approach,
the multiplier of a constraint should be 0 when a constraint is not binding.
In fact, consider the standard economic problem of utility maximization un-
der a budget constraint, but assume that the utility function is not strictly
increasing®. It may happen that a part of the budget is not "consumed" at
the optimum x* because the marginal utility is 0 at «*. In this situation, one
more unit of wealth would not increase utility and the multiplier would be 0.

The Lagrangian of problem (4.8) is:

m

L) = fl2)+ > N6 —gi(@) + ) g (b — ha())

j=1 k=1

If 2* is an optimum for multipliers \* = (A],...,\;)) and p* = (ui, ..., 1),

3In many restaurants, the quantity of soft drinks (or sometimes appetizers) you can
consume is unlimited. The reason is simply that the optimal choice of a client is not
to drink an unlimited quantity of soda. The utility function for soda cannot be strictly
increasing everywhere.
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then:

f > 0and by — hy(z) = 0 if constraint & is binding.
pp, = 0and by — hg(z) > 0 if constraint % is not binding.

In the two cases the product p, (by, — hi(z)) is equal to zero. This remark
is used to shorten the formulation of optimality conditions. The coefficients

1, are called Kuhn-Tucker multipliers.

4.3.3 Necessary optimality condition

Proposition 154 If x* is a local maximum of f in problem 4.8 and if the

gradients of all functions g; and hy, for which hy(x*) = 0 are linearly inde-

*

pendent, there exist m + n numbers ], ..., A,

s 1T, -y Hyy Satisfying the three

following conditions:

V) =D AVgi(a') = D i Vhi(a") =0
Jj=1 k=1

Vk € {1,2, ,n} ,ﬂ;(bk - hk(ﬂj*)) =0
Vk € {1,2,..p}, AL > 0

In this proposition, the multipliers p; are positive or equal to 0. In fact,
if a constraint is binding (think to these constraints as limitations for some
resources), it means that all the resource is consumed at the optimum z*. Ob-
taining one more unit of the resource would improve the optimal value of the
objective function. pj then measures the variation of the objective function

that would arise if one more unit of the resource & was made available.

Proposition 154 could be written for a minimization problem by simply

changing the sign of coefficients .
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4.3.4 Necessary and sufficient global optimality condi-

tions

In the preceding section we obtained a global maximum if D is convex, f
concave and the functions g; affine. When the problem includes inequality

constraints,this result is generalized as follows.

Proposition 155 If f is concave, the functions g; affine and the functions
hy convezx, the conditions of proposition 154 mean that x* is a global maxi-

mum of f under the constraints of problem (4.8).

If the problem is a minimization problem, replace « f concave » by « f

convex » and change the signe of the coefficients p} (they would be negative).
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